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The rotation of solid cylinders in transverse magnetic fields 

R S Peckover 
UKAEA, Culham Laboratory, Abingdon, Oxon. OX14 3DB, England 

Received 22 September 1981 

Abstract. A cylinder driven to rotate against friction in a uniform transverse magnetic 
field is considered both when the field is constrained to pass through the cylinder and in 
U ~ C U O  when it may be expelled. The rotation rate is reduced as the field strength is 
increased. Whereas in vacuo the transition between high and low rotation rates is 
accomplished by means of a catastrophic jump, the transition in the constrained flux case 
is smooth, and is similar to that for convection in a fluid layer in the presence of a vertical 
magnetic field. A simple relationship between the RMS magnetic field and the peak field 
is presented, involving the ‘magnetic flux number’ R. 

1. Introduction 

When an electrically conducting cylinder of solid material is made to rotate against 
friction in a transverse magnetic field in vacuo, a range of conditions exists for which 
there is more than one stable steady rotation rate (Gimblett and Peckover 1979, 
Peckover and Gimblett 1981). The system is an example of Thom’s cusp catastrophe 
(Thom 1975). Small changes in the control parameters result in substantial changes 
in the rotation rate, and in the magnetic field configuration within the cylinder. By 
contrast, a closely related configuration with a fixed flux boundary condition (analysed 
in this paper) has no catastrophic behaviour. It is concluded that the magnetic flux 
number %’ is a key parameter, in terms of which a simple relation between the peak 
magnetic field B* and the RMS field B within the cylinder is presented. 

The equations appropriate for rotating cyclinders are given in the next section. 
The constant flux model is analysed in 0 3, and the salient features of the in vacuo 
solution recalled in Q 4. The I? -B* relation is obtained in 0 5 .  Finally the differences 
and similarities between these two configurations are discussed. 

This system provides a simple example of the dynamic interaction between a 
magnetic field and moving electrically conducting material. Much of the early work 
on induction in solid rotators was motivated by problems in geomagnetism, in particular 
the problem of the origin of the Earth’s magnetic field. The electromagnetic generation 
of centrifugal flow by applying rotating fields to cylinders containing liquid metals has 
some features in common with this system. The rotation of convective eddies in the 
sun is responsible for the concentration of magnetic fields into flux ropes at the solar 
photosphere. References to these related topics are to be found in the first two papers 
cited above. 
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2. Configuration and equations 

Consider a long right circular solid cylinder of mass M, length L, and radius a (<c L), 
rotating about its principal axis, which to be specific is taken as horizontal. The 
rotation takes place in a transverse (vertical) applied magnetic field of uniform strength 
Bo. End effects are neglected and the configuration may be considered to be essentially 
two dimensional. The cylinder rotation induces currents parallel to the axis of rotation 
and hence a magnetic torque A about that axis. For convenience the current flow is 
imagined to be closed by a suitably arranged external circuit which interferes in no 
other way with the system. The rotation is assumed to be driven by a steady applied 
torque 8; and opposed by a frictional torque 3 taken to be proportional to the 
instantaneous rate of rotation. 

The angular momentum equation for the cylinder is 

Z(dR/dt) =$ - 3- A (2.1) 

where f l ( r ) j  is the angular velocity using cylindrical coordinates (?, 8, Z )  and I = $kiaz; 
here M is the mass of the cyclinder. Let us express the frictional torque 3 which is 
by hypothesis proportional to the angular velocity R as 

3= $AM0 (2.2) 

where A is a coefficient of friction with dimension [L’T-’I. In the absence of a magnetic 
field, a steady angular velocity Ro will be attained in which the driving torque balances 
friction; hence 8; = ;AM& It is convenient to introduce dimensionless variables 
r = ?/a, U = a2R/A and r = At/a2 where a 2 / A  is a ‘friction’ time scale. The equation 
for the angular momentum for the cylinder can thus be written in non-dimensional 
form as 

dU/dT= W O -  U-&*. (2.3) 

If Bo is the dimensionless measure of the ambient magnetic field, being the ratio of 
the Alfven speed to the friction :peed Ala, then the dimensionless flux function a 
can be defined by B = Bocurl (aZ) and the dimensionless magnetic torque M* can 
be expressed as 

A* = 3 r(aa/at9)V2a dr de. (2.4) 
77 

The function a satisfies 

aa/ar i uaalae = p i ‘  v2a 
where pm is a modified magnetic Prandtl number given by A/Vq Here the uniform 
and constant magnetic diffusivity 7 is given by (py)-’ where p and y are the cylinder 
permeability and electrical conductivity respectively. The modified Chandrasekhar 
number Q (see, for example, Weiss (1964)) is defined here as p,B& and is a measure 
of the influence of the magnetic field on the cylinder’s rotation rate. The dimensionless 
angular velocity U is the ‘Reynolds number’ for the system and the ‘magnetic Reynolds 
number’ R = pmU. 

3. Solution for constant flux 

When a cylinder rotates in vacuo, the magnetic field is increasingly expelled from the 
cylinder as the rotation rate increases, and in the limit of infinite rotation rate no 
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magnetic field penetrates into the cylinder. It is intended here to investigate the effect 
of compelling the flux to penetrate the cylinder, as would occur, for example, if the 
cylinder were placed in a vertical slot of the same diameter between two vertical 
perfectly insulating walls. A simple but somewhat idealised boundary condition which 
ensures the flux does pass through the cylinder is one where the magnetic field is 
unperturbed outside the cylinder i.e. a = cos 8 on r = 1 (see figure 1). This corresponds 

a = x  

Figure 1. Magnetic field lines for a cylinder rotating in an unperturbed external field, 
where a is the flux function. The flux number Xis conserved. 

to setting the field uniformly in the absence of rotation with the region exterior to 
the cylinder being a perfect superconductor. With this choice of boundary condition, 
the time-independent solution of (2.5) is 

where q’ = -iR and J1 denotes the Bessel function of the first kind and first order. 
It follows that the magnetic torque is 

A* = ;B; Im(S) (3.2) 

where S = qJo(q)/Jl(q). The complex function S is discussed in the appendix. Im(S) 
and hence A* is a monotonic function of R. 

In equilibrium (2.3) becomes 

Ro  = R + tQ Im(S) (3.3) 

If (X) is the average over the cylinder of any quantity X, then the RMS magnetic 

(3.4) 

which implicitly gives R as a function of Q for any choice of Ro. 

field B is defined by B2 = (B2), and is found to be given by 

B2 = (Re(.$) - 1)B;. 

Figure 2 shows that B is a monotonically increasing function of R. 
The magnitude of the magnetic field as r + 1 is given by 

B,(e)=(x2 cos2(e +p)+sin28)’”Bo (3.5) 

where Z and p are defined in the appendix. One can show that the peak magnetic 



1692 R S Peckover 

0 5* iR/2 l "*  
5 -  

4 -  

1 1 1 1 1 1 1 1 1 1 1 1 l I l 1 1 1 1  

0 10 20 30 40 

R 

Figure 2. The dependence of Re(S) and Im(S) on R. 

field B* must occur at the periphery; hence 

B" = m;x (Bl(@)). (3.6) 

Since B1(0)  = E  cos p = (Re(S) - l), it follows that 

B* 2 (Re@) - l)Bo (3.7) 
which when combined with (3.4) gives B*Bo 2 Bz. 

The maximum tangential component of the magnetic field Bg occurs when 8 = -p,  
and B1( - p )  = (Ez+ sin' Bo. This provides a reasonable estimate for B*, but a 
more accurate value depends on the regime (see below and figure 5 ) .  

If an ambient field strength Bo is chosen, and pm is given, then (3.3) can be used 
to calculate the magnetic Reynolds number of the rotating cylinder in equilibrium. 

(01 I bl (0 

Figure 3. The dependence of ( a )  U, (6) E* and (c )  B on the applied field Bo for the 
constant flux rotating cylinder. The curves are labelled with the appropriate value of pm, 
In ( a ) ,  the value of U at which R = 1 is indicated on each curve. 
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Equation (3.1) then gives the magnetic field distribution, with (3.4) and (3.6) giving 
B and B* respectively. Figure 3 shows the rotation speed V(=R/p,) ,  the peak 
magnetic field B* and the RMS magnetic field B as functions of the ambient field 
strength Bo for different values of pm. For small pm only two regimes exist-a ‘weak’ 
field and a ‘strong’ field regime. As pm increases a third intermediate regime emerges. 
The three regimes are most clearly distinguishable when pm is large, and figure 4(a)  
shows the case pm = lo4.  These regimes are here called the ‘kinematic’, the ‘dynamic’ 
and the ‘magnetic drag’ regimes. 

BO BO 
101 ibl  

Figure 4. The rotation speed U, the peak B*, and the RMS field E for a solid cylinder 
rotating in an applied magnetic field Bo which is ( a )  unperturbed outsid? the cylinder ( b )  
in vacuo; p i =  lo4. In (a) ,  B,=max(B*) exceeds U,, and is constant in the dynamic 
regime dd‘, giving hysteresis. The unstable equilibrium branch is shown by the broken 
curve. 

For both the kinematic and dynamic regimes, R is large. The magnetic field is 
expelled from the central region and concentrated in a boundary layer of thickness 
R-’” at the periphery of the cylinder. Asymptotically for large R 

(3.8) exp( - G) sin(B + G) -1 /2  a = r 

where G = (1 - r)(;R)”’; thus the tangential magnetic field at r = 1 is given by 

B, = B ~ R  sin(@ - $T). (3.9) 

Figure 5 shows that 0 = -$T is a good approximation for the location of the maximum 
tangential field for R b 5 .  For large R, 

B = (:R)’l4Bo (3.10) 

B* = R Bo (3.11) 
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Figure 5. For the constant %’ rotating cylinder, p is shcwn as a function of R ;  P is the 
value of 6 at which B: is maximum. The ratios B : B o / B 2  and B*B, , /B2 i = J  9) are also 
shown. 

and (3.3) becomes 

R~ = R + CQR’/’ (3.12) 

where c = (2di).-’  is a constant of order unity. The relative strength of the terms 
on the RHS of (3.12) distinguishes between the ‘kinematic’ and ‘dynamic’ regimes. 

If Q << R ‘Iz, the second term may be neglected. This is the ‘kinematic’ regime in 
which the magnetic field has a negligible influence on the rotation rate, which is 
determined simply by a balance between driving torque and friction. It follows that 

R = Ro B = ($Ro)’/4Bo B* = (3.13) 

in the kinematic regime. 
>> 1,  then the second term is dominant. This is the ‘dynamic’ regime 

in which the magnetic field is important and the rotation rate is determined by a 
balance between the driving torque and Lorentz forces generated by the skin current 
in the boundary layer; thus the input power is dissipated ohmically. It follows that 

R (Ro/Q)* B = u y  B* Uo/B,j (3.14) 

in the dynamic regime (where = means that constants of order unity have been 
ignored). It is noteworthy that the RMS magnetic field is essentially constant in this 
regime, that the peak field decreases as the applied field is increased, and that the 
rotation speed U decreases steeply (as B o 4 )  as the applied field is increased. 

At the transition between the kinematic and dynamic regimes, the peak field has 
a maximum B, as a function of the applied field. Its value is of the order of (p,Vi 

The third, ‘magnetic drag’, regime corresponds to R <c 1 .  In  this case we have to 
first order 

R = R(,/ [ l+ (Q/8JT)1 = Bo B* = Bo. (3.15) 

If Q >> R 
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The magnetic field permeates the whole cylinder and is only perturbed slightly. 
The rotation rate is almost completely determined by a balance between the driving 
torque and the strong magnetic field which exerts a drag with coefficient proportional 
to Q. In this regime U decreases as BO2. The transition between dynamic and 
magnetic drag regimes occurs when Q - Ro. The characteristics of the three regimes 
are summarised in table 1. 

Table 1. The values to within a factor of order unity of the magnetic Reynolds number 
R,  the peak Chandrasekhar number 0’ = pmB’’. and the mean Chandrasekhar number 
0 = p m E 2  in the three regimes. The transition from I to I1 is when B’ has its peak value 
and the transition from I1 to 111 corresponds to R - 1. The values for U, B* and 6 are 
also shown. 

4. Solution in vacuo 

An analysis of a cylinder rotating in uucuo was presented and discussed by Gimblett 
and Peckover (1979) (see also Parker 1966, Moffatt 1978). The key features are 
recalled here so that comparisons may be made with !i 3 .  

The solution for the flux function can be written as 

where S = u e x p ( i 4 ) ,  as defined in the appendix. Comparison with ( 3 . 1 )  shows that 
the in uucuo solution is obtained from the constant flux solution of $3 by scaling by 
a factor of ( 2 / a )  and rotating through an angle - 4 which tends to -ar as R + 00. 

It follows that the peak field and RMS field within the cylinder are scaled in the same 
fashion, For the retarding torque on the cylinder, a quadratic scaling enters. Hence 
Im(S) is replaced in ( 3 . 3 )  by - 4  Im(S-’), giving 

Ro = R - 2Q Im(S - I ) .  ( 4 . 2 )  

When R >> 1, Im(S-’) is equal to - ( 2 R )  which implies that the second term 
on the right-hand side of (4 .2)  can be neglected provided Bo<< Rb’4Uh’2. Thus for 
the kinematic regime 

R = R o  B = B” = 2Bo. ( 4 . 3 )  

The form of 
(Moffat 1978). 

only slightly perturbed. Thus in this ‘magnetic drag’ regime 

shows that the field is completely expelled from the cylinder as Ro+ CO 

When R << 1,the magnetic field continues to permeate the whole cylinder and is 

R = Ro/(QQ + 1) B =Bo B* = Bo. (4 .4)  
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Figure 4 ( b )  shows plots of U, B* and B for pm= lo4 for the in uucuo case, which is 
to be compared with the analogous constant flux case shown in figure 4 ( a ) .  Gimblett 
and Peckover (1979) have shown that (4.2) makes R a triple valued function of Bo 
for U:’’ 6 Bo =s RAf4UA/’ when Ro 3 40, and that only the upper ‘kinematic’ and 
lower ‘magnetic drag’ branches correspond to stable equilibrium rotation rates. These 
overlap with the consequence that the ‘dynamic’ regime does not exist for the cylinder 
rotating in uucuo, and hysteresis occurs. (Note that this hysteresis is electromagnetic, 
not magnetic; the permeability is taken to be constant in this analysis.) It is interesting 
to observe in figure 4(b)  that for the unstable branch B = U;’* as for the dynamic 
regime of § 3 (see equation (3.14)); this implies that ohmic and frictional dissipation 
are comparable. When Ro =s 40, the fold in R is absent and the kinematic regime 
passes over smoothly into the magnetic drag regime. 

5. B - B* relations 

In this section relations between B and B* are established for a wider class of 
configurations than considered so far. Suppose that a vertical magnetic field is applied 
transversely to a horizontal cylinder whose cross section is of area 9 with bounding 
curve &which is of non-negative curvature and which does not rotate. Any incompres- 
sible two-dimensional motions are permitted within this envelope subject only to & 
being a streamline. Obviously a rotating circular cylinder is a special case of this 
class of configuration with circular streamlines, and a bounding surface shape which 
is invariant under rotation. Within this cylinder, B 2  = Bi/Va12 where a is the 2 
component of the magnetic vector potential. Hence 

i i 2 /B;  = ( a j ) + W ’  a-ds k a”,“ (5 .1 )  

where j=-V2a is the electric current density. Now for steady motions in two 
dimensions, the magnetic flux equation is pm(u * V)a = V 2 a  = - j  where U is the velocity 
and is a function of position (see Peckover and Weiss (1978) for a detailed derivation). 
It follows that (a -1 )  vanishes since the curve & is a streamline, and the right-hand 
side of (5 .1)  reduces to a single term. 

It is convenient to introduce the quantity X defined by 

Then X, the ‘magnetic flux number’, is equal to the total number of intersections 
of lines of force with & (Hide 1978, 1979). Since each field line must enter and leave 
the cylinder an equal number of times, X is the sum of the flux entering and the flux 
leaving the cylinder and these two contributions are equal. X can also be written as 
$laa/aslds where a is the dimensionless vector potential. Now since & is a closed 
curve, a is a periodic function when measured along &. Since a is only defined up to 
an additive constant, the latter may be chosen so that the maximum value of a is a0 
and its minimum value is -ao. If the curve & can be divided into only two segments 
6’ and 6- on one of which the magnetic field vectors are directed into 9 and on the 
other are directed outwards, then X= 4aoBo. If there are more alternating segments, 
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then it is easy to see that X>4aoB0.  Since every field line must enter and leave at 
least once it is clear that X 3 4aoBo in general. 

With the definition of a such that -a0 s a s a0 then la1 S ag s X/4Bo. Moreover 
Bolaa/anl cannot exceed at any point the peak field B* for the region 9. Thus since 

it follows that 

B 2  < XB*/r s  (5.4) 

where the hydraulic diameter rs is 4 9 / 5  ds (Prandtl and Tietjens 1974). (For a circular 
cylinder of radius a, fi = 2a.) If B = X B * / D B z  then (5.4) implies B > 1 ,  strictly. 

For the rotating cylinder with-constant flux considered in 0 3, 2 is a constant equal 
to 4Boa. When R +CO, 8 + 2 J 2 ;  when R + 0 ,  B + 2 .  Figure 5 shows B*Bo/BZ i.e. 
i.9 as a function of R.  B has a maximum value of the order of 3.5 when R - 10. 

For the rotating cylinder in vacuo, all of the quantities 2, B* and B are multiplied 
by a factor of ( 2 / ( r )  relative to the constant flux case. Hence 9 is the same function 
of R for a cylinder rotating in vacuo as for a constant flux case. 

6. Discussion 

Solutions are given in B 3 and B 4 for a rotating cylinder: (i) with a constant flux number 
%’, and (ii) in vacuo. For any specific value of the magnetic Reynolds number R, the 
magnetic field within the cylinder is identical in the two cases, but the magnitudes of 
the fields differ by a factor of (2/a).  When Ro (a measure of the driving torque) is 
less than about 40, R is a smooth and monotonically decreasing function of the applied 
field Bo. This is true also for all values of Ro for the constant X case. In vacuo, 
however, a fold develops in the equilibrium curve for Ro b 40, and a range of magnetic 
Reynolds number R o / Q  6 R 6 Ro is inaccessible in equilibrium. This range corres- 
ponds to that for the dynamic regime in the constant X case. 

In the kinematic regime, U -  U0 in both cases. For constant 2, both B* and 8 
are substantially amplified (when Ro >> l), whereas in VUCKO B* = 2Bo, and B decreases 
as a result of flux expulsion. 

In the magnetic drag regime, B* and B remain close to the applied field Bo in 
both cases, and the velocity U decreases as BO’. 

In the dynamic regime for constant 2 the peak field B* decreases with increasing 
Bo as Uo/Bo ,  the RMS field B is constant, equal to about U:”, and the velocity 
decreases very steeply (as BO4). In the unstable (and hence non-existent) branch in 
vacuo, B is also equal to U:”, but U increases as B i  (which is of course physically 
absurd). 

If 0 is defined to be pmB2, i.e. the modified Chandrasekhar number based on the 
RMS field in the cylinder, then the angular momentum balance equation (2.3) can be 
represented in dynamic equilibrium for both systems by the following pair of ‘magnetic 
braking’ equations: 

R o - R  = 0 R a 1  

R o - R  6 R 0  R 6 1. 
(6.1) 
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For the constant X case, the maximum peak field B, = (P,/UO)”~UO. Thus for 
sufficiently large p,, B,> U,,. Hence in this configuration B* is not limited by 
equipartition arguments which would imply B* 6 UO. 

It is of some interest to compare the constant flux number rotating cylinder problem 
with another constant 2 configuration-that of convection in a fluid layer permeated 
by a vertical magnetic field with insulated side walls which constrains all the magnetic 
flux to pass through the layer. Such a configuration was considered by Peckover and 
Weiss (1972, 1978) where convection was driven within the cell by thermal tem- 
perature gradients in the low Peclet number limit. A single eddy resulted. The 
magnetic field was concentrated into ropes adjacent to the vertical side walls when 
the magnetic Reynolds number was large, and the peak field B* Cc R1’2B0,  as Weiss 
(1966) had found for kinematic amplification of the field. The dynamic interaction 
in the fluid case necessarily required numerical solution. An analysis of the results 
showed the existence of kinematic, dynamic and magnetic drag regimes as for the 
rotating cylinder solution in § 3, with results for U, B* and 8 very similar to figure 
2. The functional dependencies in the three regimes were essentially the same as 
those given in (3.13), (3.14) and (3.15) although the constants of order unity were 
slightly different. The fluid convection problem and the rotating cylinder are similar 
configurations in that the flux number X is conserved, and that in the absence of the 
magnetic field the material would rotate roughly concentrically. The configurations 
also differ in a number of ways, namely (i) solid material versus fluid (ii) solid-body 
rotation versus viscous rotation law (iii) circle versus rectangle (iv) flux boundary 
condition applied on circular boundary versus flux boundary condition applied on 
horizontal boundary. Nevertheless the global behaviour is common, and this suggests 
that the similar features are more important than the differences. 

One feature of the convective cell was the expulsion of the convective eddy from 
the side bands where the magnetic field is strong. This occurred when B* was close 
to its maximum value B,, and resulted in the reduction in the effective eddy size. 
This effect obviously cannot be present in the model of § 3. However, it is possible 
that it could be investigated with a cylinder model where the cylinder included an 
outer annulus which did not rotate, and tbe radius-of the rotating part was variable. 

For the rectangular fluid cell, 8’ = BOB where B is the average field on a vertical 
side wall. If the rectangle is of aspect ratio A then 9’ = B * ( l  +A)/6.. Examination of 
the numerical results showed B to be in the range 2 to 4-similar to the cylinder values. 

The similarity in  global behaviour between the rotating cylinder of Yj 3 and the 
fluid cell suggests that the solution for a cylinder rotating in vacuo in a vertical slot 
of the same diameter between two vertical perfectly insulating walls (thus ensuring 
constant 2) would also share these global characteristics. 

7. Conclusions 

A cylinder rotating in vacuo has been compared with one through which the applied 
magnetic flux is compelled to pass. When the field is sufficiently strong to permeate 
the cylinders-in the magnetic drag regime-the behaviour is similar. When the field 
is sufficiently weak-the kinematic regime-it is expelled from the central region of 
the cylinder and has negligible influence on the rotation rate. In uacuo much of the 
field is expelled completely; in the constant X case this is not possible-but the 
structure of the skin layer is identical. For sufficiently strong driving torques a third 
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intermediate regime occurs. For constant 2 this is the ‘dynamic’ regime in which 
small increases in the applied magnetic field result in a large decrease in the rotation 
rate. In uacuo, the intermediate regime consists of an overlap between the kinematic 
branch and the magnetic drag branch. There then exists a forbidden range of rotation 
rates, with hysteresis, involving sudden large changes in the rotalion rate as the applied 
field is varied. 

The behaviour of the constant 2 cylinder system has many similarities with low 
Peclet number convection driven in a horizontal fluid layer permeated by a vertical 
magnetic field. Both the convective system and the two cylinder configurations satisfy 
the magnetic braking equations (6.1). 

In  the relationship XB* = 9DB2,  between the peak magnetic field B* and the 
RMS field E, i t  is shown that 9 > 1, strictly, so that this provides an upper bound for 
B. Nevertheless in the systems considered in this paper, 9 is shown only to vary 
between 2 and 4 for all rotation rates; thus to within a factor of order unity 2B* -- 
DE2. 
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Appendix 

The complex function S ( R )  is defined by 

s = qJo(q)/Jl(q) 
where q2  = -iR in which R is the magnetic Reynolds number, and so is proportional 
to the rotation rate of the cylinder. Figure 2 shows Re(S) and Im(S) as functions of 
R. 

For small R (less than about 5 )  

Re(S) = 2 + 0.01 R 2  Im(S) --- aR. 

For large R (greater than about 10) 

Re(S) -- t + (1R)’” Im(S) = ( ;R)’ /~.  

If we write S = U  exp(i4) then 

U* = (Re(S))2 + (Im(S))’ 

and 

2+0.025R2 when R small 
u = ( R l ? 2  when R + 00. 

The inverse function S I ’  can be written in the forms 

S - ’  = -J6 (q)/qJo(q) = -d(ln Jo(q))/d(q2) = -i(d/dR) In (ber R’”+ i  bei RIi2) 
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where ber and bei are the Kelvin functions (Relton 1965). For small R 

Re(S-’)=0.5-0.01 RZ Im(S-’) = -R/16 

and for large R 

Re(S-’) = (2R)-’”= -Im(S-’), 

It is also convenient to define 

S - 1 = X exp(ip); 

then 

ff cos q5 = 1 +z cos p U sin 4 = B sin p 
1 +0.04RZ when R small 

when R +CO 

:R when R is small 

.={ 

{hr + (8R) - ’ /2  when R + cc 
(see figure 5 ) .  
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